

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Α.ΔΙ.Π. ΑΡΧΗ ΔΙΑΣΦΑΛΙΣΗΣ & ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ HELLENIC REPUBLIC H.Q.A. HELLENIC QUALITY ASSURANCE AND ACCREDITATION AGENCY

τεχνολογικό εκπαιδευτικό ιδρύμα ανατολικής μακεδονίας και θρακής ΜΟΝΑΔΑ ΔΙΑΣΦΑΛΙΣΉς ΤΗς ΠΟΙΟΤΗΤΑς ΤΕΙ ΑΜΘ

> Quality Assurance in Higher Education Course Data Collection Form

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΑΓΙΟΣ ΛΟΥΚΑΣ, 65404 ΚΑΒΑΛΑ EASTERN MACEDONIA AND THRACE INSTITUTE OF TECHNOLOGY AGIOS LOUKAS 65404 KAVALA

COURSE OUTLINE

(1) GENERAL

Name and surname	JOHN (IOANNIS) DERMENTZ	OGLOU		
of lecturer				
SCHOOL	Technological Applications			
ACADEMIC UNIT	Department of Electrical Engineering			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	ΣΤΝ1	SEMESTER	6 th	
COURSE TITLE	ELECTRIC DRIVE SYSTEMS			
if credits are awarded fo course, e.g. lectures, labor are awarded for the who	EACHING ACTIVITIES for separate components of the atory exercises, etc. If the credits le of the course, give the weekly s and the total credits	WEEKLY TEACHING HOURS	CREDITS	
	LecturesandExercises	3	5	
	Laboratory	2	1	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE	Special background, skills deve	lopment		
general background, special background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	Electric circuits, Power Electronics, Electric Machines Theory, Mathematics			
LANGUAGE OF INSTRUCTION and	Greek – English in the case of foreign students (ERASMUS)			
EXAMINATIONS:				
IS THE COURSE	Yes			
OFFERED TO				
ERASMUS STUDENTS				
COURSE WEBSITE	http://eclass.teikav.edu.gr/claroline/auth/opencourses.php?fc=11			
(URL)				

2

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course aims to provide the students with the relative theoretical background (description of electric drives systems, analysis, mathematical modeling using international adopted models). The course also aims to the familiarization of the students with special tools and software in order to render them capable of contributing to the design of a such system or dealing with problems arising during its operation.

When completing the course, student will be capable of:

- > Identifying the type of an electric derive system and explain the operation
- Selecting an electric drive system by applying rules like the successful coupling of the characteristics curves of the motor and its mechanical load, and ensuring its efficient operation (work production and possible improvement of energy consumption).
- Applying the relevant theoretical background in order to explain the operation of more complex drives in various industrial applications.
- Applying and using relevant software environments for checking the normal operation of a drive system or suggesting improvements verified in a simulation environment before practical implementation.
- Identifying the relevant components and subsystems of a drive system, as well as the relevant technical data & characteristics provided by the manufacturer, in order to use them in a very accurate way.
- Using and regulating laboratory instruments and devices forming a drive system and performing relevant measurements.
- Locating faults and malfunctions in the electrical or the mechanical subsystems of a drive system.
- Contributing in general in the optimum design of a drive system suitable to meet the relevant demands.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others			

> Searching analyzing and combining data and relevant information by using

relevant technology

- Assignment of Individual Project
- ➤ Assignment of Team Project
- Design and Projects Management
- Introduction of novel research ideas

(3) SYLLABUS

- > D.C. Motors (description-structure, relevant equations, characteristic curves)
- Various types of mechanical loads (description- structure, relevant equations, characteristic curves)
- Control of D.C. Motors
- 3-phase Synchronous and 3-phase Induction Motors (description-structure, relevant equations, characteristic curves)
- Control of 3-phase Synchronous and 3-phase Induction Motors (Vector Control)
- > Control applications by using microcontrollers and P.L.C.
- Methods of motor size selection
- > Mathematical modeling-simulation of electric drives systems
- Simulation software packages
- Applications in Ship's propulsion system, electric or hybrid automobiles, industrial or power production systems e.t.c.
- Data acquisition systems and signal processing for extracting useful mathematical models or in time location of various faults in the electrical or the mechanical subsystems of an electric drive.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face to face (in the classroom)	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use slides, websiteof the coursewithsupportingandauxiliarymaterial,	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	26
described in detail. Lectures, seminars, laboratory practice,	Theory Practise	13
Dectares, seminars, laboratory practice,	I abouatom, pugatian	26
fieldwork, study and analysis of bibliography,	Laboratory practice	20
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational		20

4

etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Independent study Course total	85
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Theory Examination: Fin Laboratory Examination Individual Projects or Intermed Final examination	

(5) ATTACHED BIBLIOGRAPHY

- 1. Mademlis Christos, "Servo Driving Systems , Induction Motors and Synchronous Permanent Magnets Motors", TZIOLA Publications 2010.
- 2. R. Krishnan, "Electric Drive Systems, Modeling, Analysis & Control", Kleidarithmos Publications, 2010.
- 3. Malatestas P., Manias S., "Electric Propulsion", 2nd Edition, TZIOLA Publications 2008.
- 4 I.Gottlieb, "Motors Controlling Techniques", 2nd Edition, TZIOLA Publications 1998.
- 5. Paul C. Krause, "Analysis of Electric Machinery", McGraw-Hill International Editions, New York, 1987.
- 6. I. Boldea, S.A. Nasar, "Electric Machine Dynamics", Macmillan Publishing Company, New York, 1986.