ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ	HELLENIC REPUBLIC		
А. Д. І. П.	Н.Q.А.		
ΑΡΧΗΔΙΑΣΦΑΛΙΣΗΣ & ΠΙΣΤΟΠΟΙΗΣΗΣ	HELLENIC QUALITY ASSURANCE		
ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ	AND ACCREDITATION AGENCY		

τεχνολογικό εκπαιδευτικό ιδρύμα ανατολικής μακεδονίας και θρακής Μοναδά διασφαλίσης Της ποιοτητάς τει αμώ

Quality Assurance in Higher Education Course Data Collection Form

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ EASTERN MACEDONIA AND THRACE INSTITUTE OF TECHNOLOGY

AGIOS LOUKAS

65404 КАВАЛА

ΑΓΙΟΣ ΛΟΥΚΑΣ,

65404 KAVALA

COURSE OUTLINE

1. GENERAL

Name and surname	Panagiotis Kogias				
of lecturer	rallagious Rogias				
SCHOOL	of Technological Applications				
ACADEMIC UNIT	Department of Electrical Engineering				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	DN3 SEMESTER 4°				
COURSE TITLE	AUTOMATIO	C CONTROL SY	STEM		
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly to credits	components of the course, e.g. he credits are awarded for the teaching hours and the total		WEEKLY TEACHING HOURS	CREDITS	
	Lectures a	nd Laboratory	3th+2lab	5,5	
	Add rows if necessary. The organisation of teaching and the teaching				
methods used are described in detail at (
COURSE TYPE general background, special background, specialised general knowledge, skills development	background Skills development				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	NO				
COURSE WEBSITE (URL)	http://eclass.teikav.edu.gr/ED208/				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

The aim of the course is to understand basic concepts of the theory of Automatic Control Systems.
Familiarity with the concepts of analog simulation, mathematical modeling and the dynamic behavior
of systems, both in time and in terms of frequency. The study of the behavior and stability of closed
automatic control systems. Familiarity with the problem of the composition of such systems by various
methods. The introduction to the theory of the internal condition of the systems. The introduction to
the realization of independent automatic control systems with microcontrollers.

Upon successful completion of the course students will be able to:

• describe an analog system with the mathematical model of the transfer function

• studying the behavior, its response, its stability, its performance using the Laplace transform and Geometric place of roots

• To be able to convert an analog to digital using SAE transformation z and studying the behavior, as in the case of the analog

• be able to make and illustrate the harmonic analysis of an analog (Automatic Control System) SAE on charts BODE, NICHOLS (BLACK) and NYQUIST

• based on the diagrams to study the behavior characteristic variables, stability and system performance

perjoinnance				
• Be able to use microcontrollers to implement automation systems.				
General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and	Project planning and management			
information, with the use of the necessary technology				
Adapting to new situations	Respect for difference and multiculturalism			
Adupting to new statutions	Respect for the natural environment			
Decision-making				
Working independently	Showing social, professional and ethical responsibility and sensitivity to gender issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment				
Production of new research ideas	Others			
• Search, analysis and synthesis of data an	d information, the use and the necessary technologies			
Autonomous Work				
Teamwork				
Design and Project Management				
Generate new research ideas				

3. SYLLABUS

I. Basic concepts, stages diagrams, signal flow symbols, summing point polarity change removal

and junction point.

- II. Steps of an automatic control system, static characteristic, the problem of linearization.
- III. Description levels, excitation functions, harmonic response, rules simplification of block diagrams, analog tier, tier with analog behavior and delay 1st order, step by totalitarian behavior.
- IV. Controllers, classify controllers, proportional-integral-derivative controller, combining dual controllers, controller PID.
- V. Final control, inverter DC / DC chopper, proportional valves, stepper motors.
- VI. Sensors (approach, temperature, pressure, flow, angle, etc.).
- VII. Closed loop systems behavior study, fixed setpoint late 1st order with proportional and integral controller.
- VIII. Evaluation of an automatic control system, optimal control, parameter selection criteria controller setting criterion Ziegler, Nichols, criterion CHR.
- IX. Mathematical modeling systems. Transformation Laplace, and transfer functions.
- X. Features sizes and performance closed-loop systems with emphasis on 1st and 2nd order systems.
- XI. Stability analysis Routh Hurwitz.
- XII. Root locus method (LTP).

XIII. Automatic control with microcontrollers.

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face to face (in the classroom)		
, , , , , , , , , , , , , , , , , , ,			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail	Lectures	39	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational	laboratory Exercises	39	
visits, project, essay writing, artistic creativity, etc.	independent Study	59,5	
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Total Course (25 hours workload per credit unit)	137,5	
STUDENT PERFORMANCE	Theory		
EVALUATION Description of the evaluation procedure	Final written examination (100%) which includes solving problems from different sections of the course.		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Laboratory Course I. Individual work (30%) II. Final Exam (70%) with multiple choice questions throughout the course material.		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

5. ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals:

• I.Lignos, G.Politis, P.Mpouslis, G.Chamilothoris, Automation and automated control systems (b issue).

• R. Dorf, R. Bishop, Modern Automatic Control Systems, 11th edition Tziolas. 2010.

• P. B. Malatestas, Automatic Control Systems, Ed. Tziola, 2013.

• GF Franklin and al, Feedback control of Dynamic Systems, 5 th ed., Pearson Prentice Hall, 2006

• W. N. Paraskevopoulos, Introduction to Automatic Control. Volume A Theory, Athens 2001.

• C. E. Rohrs, J.L. Melsa and D.G. Shultz, Linear Automatic Control Systems, Ed. Tziola, 1996.