

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Α.ΔΙ.Π. ΑΡΧΗ ΔΙΑΣΦΑΛΙΣΗΣ & ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ HELLENIC REPUBLIC H.Q.A. HELLENIC QUALITY ASSURANCE AND ACCREDITATION AGENCY

τεχνολογικό εκπαιδευτικό ιδρύμα ανατολικής μακεδονίας και θρακής ΜΟΝΑΔΑ ΔΙΑΣΦΑΛΙΣΉς ΤΗς ΠΟΙΟΤΗΤΑς ΤΕΙ ΑΜΘ

> Quality Assurance in Higher Education Course Data Collection Form

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΑΓΙΟΣ ΛΟΥΚΑΣ, 65404 ΚΑΒΑΛΑ EASTERN MACEDONIA AND THRACE INSTITUTE OF TECHNOLOGY AGIOS LOUKAS 65404 KAVALA

COURSE OUTLINE

1. GENERAL

SCHOOL	School of Technological Applications			
ACADEMIC UNIT	Department of Electrical Engineering			
DEGREE LEVEL	Undergraduate			
COURSE CODE	AN4 SEMESTER 1 st			
COURSE TITLE	APPLIED THERMODYNAMICS			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS	CREDITS
Lectures and Exercises		3	4,5	
Add rows if necessary. The organization of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	General Kno	wledge		
Required passed courses:	-			
TEACHING AND EXAMS LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS:	No			
COURSE WEBPAGE (URL)	http://eclass.teikav.edu.gr/ED189/			

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

Target and objective of the course is to teach students the basic concepts of applied thermodynamics and, mainly, understand the concept of heat as energy, the principles of thermodynamics, the circular modifications, the thermodynamics cycles as well as the conversion of heat into other energy types, with emphasis in its ability to utilize it for the production of electrical energy with the objective of environmental protection.

Upon successful completion of the course, students should be able to:

- Identify the thermodynamic alterations and calculate the participating.
- Solve simple and complex mathematic problems from the taught units.
- Convert the results from his/her calculations to the appropriate units either for the National or the International System of Units.
- Assemble a thermodynamic cycle and calculate its performance,
- Identify known thermodynamic cycle and calculate from the diagram all its parameters.
- Understand the concepts of heating or cooling machines and separate them.
- **General Competences**

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others...

- Research, analysis and synthesis of data and information with the usage of the necessary technology
- Autonomous work
- Teamwork
- Work in a scientific environment
- Production of new research ideas
- Respect to natural environment

3. COURSE CONTENT

- 1. Thermodynamic system.
- 2. Ideal gas: kinetic theory, ideal gas equation, gas laws.
- 3. First thermodynamic law. Internal energy. Enthalpy.
- 4. Applications of the 1st thermodynamic law in changes of ideal gases.
- 5. Second thermodynamic law. Entropy.
- 6. Two phases thermodynamics. Evaporation.
- 7. Real Gases. Thermal capacity.
- 8. Principles of differential thermal analysis and calorimetry.
- 9. Thermal machines. Thermal cycles.
- 10. Carnot cycle. Performance rate of thermal and cooling cycle.
- 11. Rankine cycle and improvement interventions.
- 12. Hygrometry applications (conditioning, cooling towers).
- 13. Air cycles. Otto cycle, Diesel, mixed cycle. Brayton cycle, Stirling, Ericsson. Brayton-Rankine combined cycle.
- 14. Exergy, analysis of exergy.

4. TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD	Room Lecture			
Face-to-face, Distance learning, etc. UTILISATIONS OF	Callabus areasization in DDT alidas			
INFORMATION AND	Syllabus organization in PPT slides.			
	Learning process support through e-class electronic Contact via email.			
COMMUNICATION TECNOLOGIES	Contact via email.			
Use of ICT in teaching, laboratory education,				
communication with students				
The manner and methods of teaching are	Acivity	Semester workload		
described in detail.	Lectures	33		
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,				
tutorials, placements, clinical practice, art	Writing of small	6		
workshop, interactive teaching, educational	courseworks	0		
visits, project, essay writing, artistic creativity,	courseworks			
etc.				
The student's study hours for each learning				
activity are given as well as the hours of non-				
directed study according to the principles of				
the ECTS	Self-contained coursework	73		
	Course Summary	112		
	(25 workload per credit)			
STUDENT ASSESSMENT	Writing of small courseworks (· · · · · · · · · · · · · · · · · · ·		
Description of the evaluation procedure	Final written examination (90%			
Language of evaluation, methods of evaluation,	problems of different sections of	of the course (allowed to use		
summative or conclusive, multiple choice	notes).			
questionnaires, short-answer questions, open-				
ended questions, problem solving, written work,				
essay/report, oral examination, public presentation, laboratory work, clinical				
<i>examination, laboratory work, clinical</i> <i>examination of patient, art interpretation, other</i>				
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to students.				
statents.				

5. RECCOMENDED READING

- Suggested bibliography: - Related academic journals:

- Kappos Th. John, "Applied Thermodynamics I: Theory and Exercises", publications Klidarithmos EPE, 1st edition 1996, ISBN: 960-209-293-9
- Yung Hugh D., "University Physics" publications Papazisi AEBE, 1st edition 1994, ISBN: 978-960-02-1067-5
- Yunus A. Gengel, Michael Boles, "Thermodynamics: An Engineering Approach", McGraw Hill, New York, 2002, ISBN: 0-07-238332-1